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Abstract 

We find and identify the contact group of  plane hyperbolic conformai geometry as a step 
to a better understanding of  conformal invariance in physics. 

1. Introduction 

The conformal group, mainly in infinitesimal form, has recently aroused 
widespread interest in field theory. As in most physical theories, a better 
understanding of the mathematical foundation wilt illuminate such a theory. 
In this work we attempt to enlarge on this. 

First we wish to remark that prior to the existing fairly acceptable inter- 
pretation of conformal transformations (Kastrup, 1968, I966a, b), some 
authors tried to connect them with kinematical transformations (for example 
in Minkowski space (Fulton et aL, 1962a, b)); in fact the conformal relativistic 
group corresponds to the invariance group of reference systems with arbitrary, 
but constant, acceleration. 

In spite of the fact that this interpretation has not been generally accepted 
(Kastrup, 1968), we will proceed from this point of view, hoping that the new 
mathematical features which emerge might be of use in the actual interpret- 
ation of conformal transformations. 

The condition to be satisfied for all systems with constant relative acceler- 
ations can be expressed geometrically as a differential equation involving the 
'second' acceleration b = d3x/dt3; the invariance group of the equation b'  = 0 
will provide the kinematical group for this situation. 
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Hill (1945) proved that such a group is precisely the conformal group. We 
are going to find the contact  group which leaves this equation invariant (a 
precise definition will be given later), restricting ourselves to (1 + 1) space-time 
dimensions for simplicity. We shall then identify the conformal group as a sub- 
group of this larger contact group. 

In Section 2 we define the infinitesimal extended contact transformations 
in the plane; in Section 3 the Lie algebra of  the contact group is obtained for 
the third-order equation; and in Section 4 we obtain no larger group, in the 
point transformation case, for the second-order equation which corresponds to 
the normal Lorentz invariance, Finally we identify the contact group with the 
conformal group in three (3 + 1) dimensions. 

Generalisations to realistic dimensions or possible use in field theory are 
reserved for future work. 

2. Contact  Transformations 

A manifold "¢/of  odd dimension = 2n + 1 with a 1-form 0 such 0 A (dO) n 4= 0 

is called a (exact) contac t  man i foM (Nomizu, 1966; Abraham, 1967); a contact 
transformation is a diffeomorphism in a contact manifold which preserves 0 
'projectivety' ,  i.e. g is o f  contact if: 

0 g = hgO (2.1) 

where hg is a function h: 3V" -+ R; in other words 0 = 0 =~ 0 g = 0; in classical 
language, a contact transformation leaves invariant the Pfaff equation. Locally, 
one can always write (Abraham, 1967): 

n 

0 = dy  - ~ Pi dx i  (2.2) 
i=1 

if(x1 •. • Xn; P l  •. • P n ; Y )  are local coordinates. In 2n + 1 = 3, one has 

0 = dy  - p dx  (2.2') 

and the following simple interpretation 

ay ayg 
0 = 0 =~ p = - - "  0 g = 0 =~ pg  = - -  (2.3) 

d x '  dx  g 

i.e. if ~U = ~V" 3 is the projective tangent bundle of  the plane with local coordi- 
nates (x, y, p), contact transformations retain this fibre bundle structure 
(Abraham, 1967). Sophus Lie introduced the concept of  contact transform- 
ations (BeriJhrungtransformationen) to solve differential equations (Lie, 1892, 
Part II; Campbell, 1970). The appellation 'contact '  is due to the fact that if 
(e.g. in the plane) two curves are tangent they are still tangent when trans- 
formed, because the point of tangency and the slope of the common tangent 
make up a point in the contact manifold, and contact transformations are 
point transformations in the contact manifold. 
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Let x, x o = et, be coordinates in q/" = R z. A one-parameter group of  trans- 
formations ~'r has a generator (vector field) X such that 

X =  ~o(Xo, X) 2 -3-  + ~(Xo, X) ~ (2.4) 
OX 0 OX 

where Go = Xxo and ~ = Xx, the infinitesimal transformation is 

? 

Xo -~ Xo = Xo(~) = Xo + t~o(Xo, x) ;  

y o  - ~ y o  = x  ~ x '  = x ( ~ )  = x  + t~(Xo, X) 

Now in ~ 3 coordinates (x, Xo, p)  an infinitesimal contact transformation is 
a vector field Y with ~T group such: 

O r = hTO ~ LyO = hTO (2.5) 

where LyO is the Lie derivative of  the contact form (2.2). If  

Y=~o(X, Xo, p)3/3Xo +~(X, Xo, p )3 /3x+  n(X, xo, p)O/Op (2.6) 

is a general vector field in R 3, it generates an infinitesimal contact transform- 
ation and verifies (2.5), which is equivalent to: 

(Go dp - ~ dxo) - d(p~o - ~) = h£(dx - p dxo) 

I f  ~(x,  y, p )  = P~o - ~, the latter equation amounts to: 

Go 3/) ' rr + p  q~ 

f 34, 3~ ~x' ~ P ~ - ~  (2.7) 

) (=X+ ~ o  + 3Xo p _ ~ p 2  (2.8) 

The function ~b = ~(x, y, p) is called the generating function of  the contact 
transformation (Lie, 1892; Campbell, 1970). 

A point transformation in ~ 2, i.e. an ordinary transformation, also gives 
rise to an (extended) transformation in the contact bundle, and is of  contact 
character, but not of  the most  general type; these will be called extended 
point transformations. If  (2.4) is the generator the extended generator is 
Once, 1956): 
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Similarly one can extend a contact transformation to make it operate in 
the higher order derivatives. We shall need the formulae up to third order. 
Calling 

q = clgx/clxo 2 = dp/cIxo; clp = q ClXo 

d3x dq .  
r = dxo3 dxo dq = r dx  o 

and writing 

(2.9) 

q'  = q + r~: (x, Xo, P) 

r' = r +  W(x, Xo, p) (2.10) 

from dp'  =q'  dxo = d ( p  + rrr) 

dlr = q d~o + ~- dxo (2.11) 

As d(Tr - q d~o) = dTr - q d~o - fo r dxo,  it remains 

d(n - q~o) = t~ dx  o - ~or dxo (2.12) 

Defining the total derivative 

d ~ ~ ~ 
. . . . . . .  +p  - -  r - -  (2.13) 

dxo OXo ~x + q Op + ~q 

we obtain 7r - q~o = --(O~/BXo) because ~ = qS(x, Xo, p)  only. Therefore 

d2q~ 
= - dxo2 (2.14) 

independent of higher derivatives. Similarly it can be seen that 

d3¢ 
p = dxo3 (2.15) 

The explicit form of K and p is rather long: ( +0 0) 
- -~= X2  + 2 q X  + q 2 ~ p 2  + q ~  x (o (2.16) 

- -  + 3 q X  + 3q  2 _ p  = 3 + 3 q X  2 + 3q2X~p2  + q3 

+r (3q  ~2 ~-~-g + 3X~pp + 3 0-~-)~b (2.17) 

where 

O 3 X = - - + p  - -  
OXo ~x 
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3. Acceleration lnvariance Group 

Consider a relativistic motion in •z: (x ° = ct, x). If it has a uniform acceler- 
ation the path is a hyperbola, and transformations which preserve these types 
of  hyperbolae are precisely the Poincar~ (1 + 1) transformations. Now the 
relation between the second acceleration b = d3x/dt 3 and the acceleration b '  
in the proper system of  the moving point is well known in special relativity 
(Pauti, 1967); it is: 

b 3va z 
b t - 

(C 2 __ / 3 2 ) 2  + (C 2 - -  / ) 2 ) 3  (3.1) 

with u = dx/dt, a = d2x/dt 2, b = d3x/dt 3. The group referred to in Section 1 as 
the transformation group between systems with arbitrary constant relative 
acceleration is the invariance group of b'  = 0 or 

1 -  \ xo] 

which is, of  course, the differential equation of all equilateral hyperbolae on the 
plane, (x - ~)2 _ ( y  _ ~)2 = ~/2 and the point invariance group of  (3.2) is file 
conformal group of  the pseudo-euclidean plane. 

To obtain the contact invariance group of  (3.2) we write the equation in 
! ! t v the new variables Xo, x, p, q, r ~ Xo, x ,  p ' ,  a ,  r ,  which, under the group, are 

in accordance with (2. I 0) and similar expressions resulting in 

7r 6pZq2 + (1 _p2)p  + 3q27r + opqK = 0 (3.3) 
1 _pZ 

From the expression for zr, ~ and p obtained the following system of 
partial differential equations results: 

2 334 0z~ (1-p)~=3pop 2 (3,4) 

' +(1 +p2)  +p  Op 2 + 3x 3p 

+ p ( l  ._p2) X 3  p 

( 1 - - p  2) 2 ~ - - p + X ~ -  x +2pXZq~=0 (3.6) 

X3(b : 0 (3.7) 
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From (3.4) 

= - A . , / O  - p2) + Bp + C (3.8) 

with A, B, C depending only on (x, Xo). Now (3.5)-(3.7) impose on A, B, C 
the restrictions 

Axox o = - A x x ;  Axxo = 0 

Cxo = - B x ;  Cx = - B x o  

[ Bxox = - C~x; B~ o :co = - G o x  

2Bxx +Bxo::o + 3Cxox = 0 

2Bxoxo + Cxx + 3Bxox = 0 

(3.9) 

(3.10) 

(3.11) 

'All third-order derivatives of  A,  B, C are zero' (3.12) 

With this ¢ depends on ten arbitrary integration constants, and can be written 
on the form: 

4) = a ,  (Xo 2 - x2)` / (1  - p2) + a2Xo`/(1 _ p2)  + a3 x ` / (1  - p2) 

+ i f4 , / (  1 -- p 2 )  +/31 [P(Xo 2 + x2)/2 _ XXo] 

+/32 [pxxo - ½(Xo 2 + x2) +/33(pxo - x )  +/34(px - Xo) + ~3sp + f16] 

(3.13) 

From (2.7) the most general generators can be written as: 

4 6 
x =  E ~;x, + E /3jxj +4 

i=1 i=1  

Where 

and 

p ( x 0 2 - X  2) ~ Xo 2 - x  2 

X1 = 2 , / ( t  _ p 2 )  3Xo ÷ 2 , / (1  _ p 2 )  3x 

pxo 3 x o 
X2 - , / ( 1  _ p 2 )  ~)x0 + , / ( 1  -p2) 3x 

px  3 x 
X3 - , /(1 _ p 2 )  OX 0 + , / (1 _ p 2 )  3x 

p 3 1 

~4 - ,,/(1 - p 2 )  OXo + , / ( t  - p 2 )  Ox 

XO 2 +X 2 ~ ~ 
X5 - +XoX 3X +X(1 - - p 2 )  3p 

2 3Xo 

(3.14) 

a 
+ `/(1 -pZ)(Xo - x p )  @ 

2_ 
+ `/(1 -p~ )  0p 

2_ + p ` / (1  _ p 2 )  OP 

(3.15) 
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- - + ½ ( X o  2 +x  2) +xo( t  _ p 2 )  
X 6 = x x  0 ~X 0 

X7 =x + X o T - + ( 1 - p 2 )  
0Xo Ox Op 

3 0 
X 8 = x  0 + x - -  

3Xo 3x 

3 
X 9 - 

OXo 

X l o  = g (3.16) 

The commutation relations can be obtained at once with the definitions: 

J41 = 2 -1 /2 (29  - Y s ) ;  

J31 = 2-1 /2(X9 + X s ) ;  

J12 -- X7 ,  

J51 = - X 2  ; 

J53 = ~-1/2(X~4 -- X1); 

J42 = - 2 -1 /20 (6  + XlO) 

J32 = 2-1 /2(X6 - X l o )  

J34 = - X 8  

Js2 = - X 3  

J s 4  = 2 - 1 / 2 0 ( 4  + X1) (3.17) 

Taking the form 

[ J ~ ,  Jv~l = +(g~vJ~5 + g~J~v - g~vJ~8 - g~6J~v) (3.t8) 

(with diagg: + - + - +) characteristic of the Lie algebra of the pseudo- 
orthogonal five-dimensional group 03+2 (N). 

The generators of the point group are easily identified, because ~o and ~ of 
(2.7) must not be p-dependents. They are Xs, .  •. Xlo, and generate the 
ordinary conformal group of the pseudo-euclidean plane: Pl.1, isomorphic to 
02, 2- That Xs . . . .  Xlo close under commutation, i.e. F1,1 C 03, 2 as sub- 
group, is easy to prove. 

For the euclidean case, see Carnpbell (1970) and Lie (1892, Part III). Hill 
(1945) also gives a short discussion in the Minkowskian case. 

4. Contact Group o f  Special Relativity 

As we have remarked the point invariance group of a relativistic uniformly 
accelerated motion 

dt 2:  c 2 -  ~-JF] ] =ao =const. (4.1) 
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is the Poincar~ group. Let us look for the contact  group of  this equation. In 
the notat ion of  Section 3 equation (4.1) becomes: 

with 

q 
p2,2) = ao c4 = aa = const. (4.2) 

(1 

d2x dp 

q = dxo 2 dx o 

A method similar to the one used in Section 3, leads to 

= _4alpTr( 1 _ p2) (4.3) 

and from the expressions for K and rr we obtain a new partial system; one of 
the equations is 

~p 2 0 (4.4) 

which, combined with ~b = P~o - ~, imply that 0p~0 = 0p~ = 0, i.e. we obtain 
xo --> xo + r~o(X, x o ) ; x  -+ x + r~(xo, x),  which is an extended point  trans- 
formation. The contact  group of  (4.1) is the point group, namely the inhomo- 
geneous (1 + 1) Lorentz group. Perhaps this is the reason why no one has 
followed this scheme up to now. 

Finally, the conformal contact  group in (1 + 1) coincides with the (point) 
conformal group in (2 + 1) (which is O3, 2 (Dieudonn~, 1971)). In a later paper 
we will t ry to show this equivalence more clearly. 
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